Gait Regulation for Bipedal Locomotion
نویسندگان
چکیده
This work explores regulation of forward speed, step length, and slope walking for the passive-dynamic class of bipedal robots. Previously, an energy-shaping control for regulating forward speed has appeared in the literature; here we show that control to be a special case of a more general time-scaling control that allows for speed transitions in arbitrary time. As prior work has focused on potential energy shaping for fully actuated bipeds, we study in detail the shaping of kinetic energy for bipedal robots, giving special treatment to issues of underactuation. Drawing inspiration from features of human walking, an underactuated kinetic-shaping control is presented that provides efficient regulation of walking speed while adjusting step length. Previous results on energetic symmetries of bipedal walking are also extended, resulting in a control that allows regulation of speed and step length while walking on any slope. Finally we formalize the optimal gait regulation problem and propose a dynamic programming solution seeded with passive-dynamic limit cycles. Observations of the optimal solutions generated by this method reveal further similarities between passive dynamic walking and human locomotion and give insight into the structure of minimum-effort controls for walking.
منابع مشابه
Gait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator
The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...
متن کاملLocomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal terrestrial walking, and a comparison with other locomotor modes.
One of the great ongoing debates in palaeo-anthropology is when, and how, hominids acquired habitual bipedal locomotion. The newly adopted bipedal gait and the ancestral quadrupedal gait are most often considered as very distinct, with each habitual locomotor mode showing corresponding anatomical adaptations. Bonobos (Pan paniscus), along with common chimpanzees (P. troglodytes), are the closes...
متن کاملStable locomotion control of bipedal walking robots: synchronization with neural oscillators and switching control
Two novel approaches to stable legged locomotion control (neural-oscillator based control and switching control) are studied for achieving bipedal locomotion stability. Postural stability is realized by structural dynamics shaping, and gait stability is achieved by synchronization with neural oscillators and switching control. A biologically inspired control with neural oscillators (central pat...
متن کاملRobustness: a new SLIP model based criterion for gait transitions in bipedal locomotion
Bipedal locomotion is a phenomenon that still eludes a fundamental and concise mathematical understanding. Conceptual models that capture some relevant aspects of the process exist but their full explanatory power is not yet exhausted. In the current study, we introduce the robustness criterion which defines the conditions for stable 1 ar X iv :1 40 3. 08 79 v1 [ cs .R O ] 4 M ar 2 01 4 locomot...
متن کاملFroude and the contribution of naval architecture to our understanding of bipedal locomotion.
It is fascinating to think that the ideas of two 19th century naval architects could offer useful insights for 21st century scientists contemplating the exploration of our planetary system or monitoring the long-term effects of a neurosurgical procedure on gait. The Froude number, defined as Fr = v2/gL, where v is velocity, g is gravitational acceleration and L is a characteristic linear dimens...
متن کامل